6.3.1. הגדרת קבוצות מורכבות – הגדרה באינדוקציהראינו דרכים להגדרת קבוצה:
נראה כעת דרך נוספת להגדיר קבוצה – הגדרת קבוצה באינדוקציה. לשם הגדרת קבוצה באינדוקציה יש צורך בקבוצת גרעין (המסומנת ב-) וקבוצת פעולות, פונקציות (המסומנת ב-). הקבוצה המוגדרת באינדוקציה על ידי קבוצת הגרעין וקבוצת הפעולות המסומנת ב- היא הקבוצה העונה על שלוש הדרישות הבאות:
דוגמא
דוגמא – שפת ABA תהי שפה של מילים מעל האותיות שתוגדר כך: כך ש: מוסיפה מימין למילה. מחליפה את ה- הימני ביותר ב- ו- מוחקת את ה- הימני ביתר. המילים הבאות לדוגמא שייכות לשפה: . תגיות המסמך:תודה רבה!תודה על ההסבר המצויןתודהמברוק! תודהיש לכם טעותבסגור הטרנזיטיבי שהתקבל אצלכם, קיימים הזוגות <4,1> ו-<1,4>, אבל מתוקף היותו טרנזיטיבי הוא חייב גם להכיל את <1,1> ו-<4,4>. ההגדרה של טרנזיטיביות לא מחייבית a,b,c שונים.כנ"ל לגבי <2,3> ו-<4,2> - חייב להימצא הזוג הסדור <4,3>. מצאתי עוד 3 דוגמאות כאלה.. מבלבלהיית צריך לתת דוגמאות גם ליחסים לא סימטריים.... התבלבלתי ממש בין X לY בגלל זה...מבלבלהיית צריך לתת דוגמאות גם ליחסים לא סימטריים.... התבלבלתי ממש בין X לY בגלל זה...קבוצה סופיתמישו יכול להעלות את ההוכחה לכך שכל תת קבוצה של קבוצה סופית היא סופית ? זה ברור אבל אני צריך את ההגדרה הפורמלית לזה ..תודה רבהתודה רבה ספר מעולה מסביר מצויין שתצליח תמיד :-)סגור טרנזיטיביניר אתה בטוח ש- (4,2) הוא חלק מהסגור הטרנזיטיבי (משפט 3 מלמעלה)?אני לא סגור על החומר, אבל אני לא חושב שזה נכון... יפה מאוד אך ישנן כמה טעויותישנן כמה טעויות (קריטיות להוכחה) כשעברתי על החומר,למשל בהוכחה ש R* טרנזיטיבית (סעיף 2) יש בלבול שלם בין x,y,z אז צריך לתקן את זה. כל הכבוד!!!!כל הכבוד על העבודה שעשית כאן!!!נורא עוזר!!!! תודה רבה רבה רבה רבה!כל הכבוד על העלאת הסיכום המעולה הזה לטובת כולם!המון תודהוואו, חומר כל כך ברור ומסודר!עברתי על עשרות ספרים ואף אחד לא ברור וענייני כמו זה - פשוט כל הכבוד! תודה, תודה תודה! תודה רבה!!!!!!!!אף פעם לא ברור לי מה האינטרס של אנשים כמוך, להעלות חומר ממש מועיל לאינטרנט בחינם...בכל אופן, רציתי לומר: כל הכבוד ותודה רבה, הסיכומים שלך מאוד עזרו לי ואני מאוד מעריך את הזמן והמאמץ שהושקע בהם. והלוואי ויהיו רבים כמוך... |
תוכן העניינים:
קישורים רלוונטיים:שיתוף: |
הוכחות להגדרה 2
אשמח להגדרות פורמליות מפורטות עבור המשפט. תודה רבה